{{detailStore.author.is_follow?'已关注':'关注'}}
管理
对比通用大众宝马,特斯拉的电池续航能力到底有多强?
话题文章
​​42号车库:新出行新能源大咖专栏作者、微博汽车作者

特斯拉的粉丝一直坚定地认为,特斯拉的技术水平是遥遥领先的(不对,这个词现在已经不能随便用了)。

传统企业的工程师出来反驳,特斯拉并没有你们以为的那么牛。

粉丝不服,那你们的续航怎么没有超过特斯拉?

工程师不想解释,却在私下嘀咕,我们的能量密度也很高,只是成本太高没人用而已。

工程师觉得粉丝啥也不懂,粉丝觉得工程师都是老顽固。两个群体就这么互相标签化,离多维度地还原事情的本质这件事越来越远。

两边的对立常常让我困惑,为什么不能好好交流呢。

越来越多的人问我这个问题,特斯拉的电池续航能力到底有多强。三言两语说不清,不如尝试着写一写吧。当然,我并不是专业工程师,有不对的地方欢迎指正。

在试着探讨这个问题之前,我们先界定一下这个问题的前提条件,梳理几个基础概念。

1、车辆续航除了跟电池有关以外,还跟不同工况下的运行有关。由于后者的问题比较复杂,今天主要来谈电池。
2、电池最重要的性能参数是能量密度,能量密度有体积能量密度(Wh/L),也有质量能量密度(Wh/kg)。我们在电池上更多谈论的是质量能量密度(Wh/kg),它决定了单位重量的电池所储存能量的大小。
3、电池的能量密度常常指向两个不同的数据,一个是电池系统的能量密度,一个是电芯的能量密度。
电芯(Cell)是一个电池系统的最小单元,也有人描述为单体电池。你理解为单节电池就行,比如说,一节五号电池。M 个电芯组成一个模组(Module),N 个模组组成一个电池包(Pack),这就是车用动力电池的基本结构。也有人直接把电池包叫做电池组。

Nissan Leaf 使用的是软包电池,从上到下依次为电芯,电池模组和电池包。

其实就是一个很简单的公式,电池包 = N·模组 = N·(M·电芯)。

4、由于电池包关系到电池最终的形状和车辆布置,大部分厂家会选择采购电芯,自己来做电池系统。电池系统的能量密度和电芯选型有关,比如圆柱电池因为单个电芯容量小,电池系统结构复杂,在单个电芯能量密度占优势的前提下,电池系统的能量密度相对会低一些。(结论参考来自麦肯锡的报告

电动车制造商的电池供应链策略,原图来自麦肯锡,42号车库翻译。

5、从结构上划分,电芯主要有三种类型,方壳电池(Prismatic),软包电池(Pouch)和圆柱电池(Cylindrical)。

从左到右分别为圆柱电池、方壳电池和软包电池。

从原材料划分,电芯有磷酸铁锂、镍钴锰(NCM)和镍钴铝(NCA)等不同类型,这里的材料主要指的是正极材料。在原材料的影响中,正极材料对电芯的能量密度影响较大。

负极材料普遍以石墨为主,目前主流研究方向在探索硅碳负极的商业化。
电芯的结构和原材料组成的不同,对电芯的能量密度均有影响。

以上这些内容,我再把要点总结一下。

在我们讨论电池对车辆续航里程的影响时,主要讨论的是电池系统的能量密度和总体重量的结构布置。而电池系统的能量密度主要由电芯正负极材料和结构选型决定。
建立了框架上的基础认识之后,我们现在可以针对具体的车型来谈细节了。


我们由大到小来看。
首先,是电池包的整体结构。
麦肯锡的报告中,提出一个很重要的结论,那就是不同车辆结构上布置的电池系统样式,对电池系统的能量密度大小有重要影响。
对于这一点,我们直接看图感受。

先来看一看在第二次电动车浪潮里,生产了第一款量产电动车 EV1 的老牌厂商通用。
以下这张图,从左到右分别为第一代 Volt ,第二代 Volt ,Spark EV 和最新款的雪佛兰 Bolt 的电池系统。其中,Volt 为插电混动车型,Spark EV 和 Bolt 是纯电动车型,Spark EV 是自 EV1 停产之后通用推出的第一款量产电动车型。

照片来自 Jeffery Sauger

来看一下 Spark EV 的电池布置和电池结构。

雪佛兰 Spark EV

雪佛兰 Spark EV

2014 款 Spark EV 用的是磷酸铁锂电池,由 A123 提供,容量 21.3 kWh 。
2015 款 Spark EV 的电池改用 LG Chem ,96 组,每组 2 个电芯,每个电芯 27 Ah ,3.75 V ,一共有 192 个电芯,电池容量为 19.44 kWh(192 x 27 Ah x 3.75 V )。
整个电池系统体积 135 L ,总重 215 kg ,比老款减重 39 kg 。根据以上数据计算,2015 款 Spark EV 电池系统体积和质量的能量密度分别为 144 Wh/L 和 90 Wh/kg 。

电池更换后,两款车 EPA 标准下的续航里程均为 132 km 。也就是说,虽然电池容量和重量都减少了,但是新款电池的能量密度提升了,车辆续航里程保持不变。但是一百多公里的续航显然没太大意义。
要继续提升车辆续航的话怎么办呢。

要么继续提升电芯的能量密度,要么就办法多装一点电芯。简单说,要么继续用这个平台,要么就得改了。
旧平台改造(AEP:Adapted Electric Platform)分为两种类型,一种是基于旧平台的旧设计,一种是基于旧平台的新设计。Spark EV 属于前一种,用的是 Gamma II 平台,雪佛兰 Bolt 就属于后面一种,基于 Gamma G2SC 平台设计。

雪佛兰 Bolt

雪佛兰 Bolt

请看,肉眼可见的,电池结构变得更加平坦,电池体积也增加了,可以装下更多电芯了。没错,雪佛兰 Bolt 的电芯增加到了 288 个,依然是 96 组,但是每组增加到 3 个电芯。

电芯由 LG Chem 提供,每个电芯 55 Ah ,3.75 V 。电池容量近 60 kWh (实际是 288  x 55 Ah x 3.75 V = 59.4 kWh)。
电池体积 285 L ,总重 435 kg ,电池系统的能量密度为 246 Wh/L 和 137 Wh/kg ,EPA 续航里程为 383 km 。
可以看出,从 Spark EV 到 Bolt ,电芯数量增加了一半,电池体积增加了 0.7 倍,电池重量增加了一倍,电池系统的能量密度也增加了一半,而车辆续航里程则增加了两倍。

重新设计后的车辆底盘,更有利于电池系统的布局。
除了具有历史代表意义的通用电动车(特斯拉也曾经借鉴过 EV1 的设计)以外,另外一款全球知名的畅销电动车是 Nissan Leaf 。
要说 Spark EV 的电池布置虽然局促,但形状还算平整。到了 Nissan Leaf 身上,本来形状非常规则的软包电芯堆叠到一起,被布置出一个不规则形状,来适应车辆上的座位结构。

一个电池包里,有横着放的,有竖着放的,简直逼死强迫症。完全没有体现出日本人应有的处女座特质。

Nissan Leaf

Nissan Leaf

Nissan Leaf

Nissan Leaf 说是自己的 EV 平台,其实也是参照 Tiida 做的。这么多年过去了,动力系统的布置一直在调整,但是电池的形状和位置却基本没什么变化。

Nissan Leaf 新旧款对比

经过刚才 Bolt 电池结构的学习,看到这里你是不是可以猜一猜,Leaf 的续航提升可能有限。
对的。

Nissan Leaf 一共用了三种电池,从 24 kWh 到 30 kWh 再到 40 kWh ,电芯数量始终不变,一直是 192 个,EPA 续航里程从 135 km 提升到 172 km 再到 241 km 。
然而,Bolt 已经快 400 km 了喂!
当然,你要换一种标准看的话,数据看起来还是可以的。


Nissan Leaf 在 JC08 标准下的续航表现

结论说完了,来看一下具体数据。
24 kWh 的电池使用的是 AESC 的锰酸锂 LMO 电芯,每个电芯 33.1 Ah ,3.8 V 。电芯总重量为 151.1 kg ,电芯的能量密度为 317 Wh/L 和 157 Wh/kg 。
30 kWh 的电池用的是镍钴锰(NCM)电池,重量比 24 kWh 的增重 21 kg 。电芯的能量密度为 396 Wh/L 和 174 Wh/kg 。

Nissan Leaf 的电池变化

到了 2017 款,Nissan Leaf 新增了 40 kWh 的电池,EPA 续航里程 241 km 。对,此时已经 2017 年了。
在通用宣称自己每卖出一辆 Bolt 就亏损 9000 美金时,不知道说日产是省钱好呢还是省钱好呢还是省钱好呢。
美国和日本的代表作都看过了,我们现在来看德国。

大众的 MQB 平台很多人都很熟悉了,e-Golf 就是 MQB 平台下的产物。e-Golf 是大众继 e-up!之后推出的第二款量产电动车。

大众 e-Golf

大众 e-Golf

有没有一种熟悉的感觉,那种传统内燃机平台下诞生的不规则电池结构的尴尬又来了。
e-Golf 的电池在 Volt 的 T 型结构( T 型结构最早来源于通用 EV1 车型)上还加了一对小翅膀,企图做一点空间上的挣扎。
然而,数据显示,2015 款 e-Golf 的 EPA 续航里程是 134 km 。
2015 款 e-Golf 用的是松下三洋的方壳电池,电池容量 24.2 kWh ,重 330 kg 。一共 27 个模组,264 个电芯( 88s3p ) ,每个电芯 25 Ah 。

大众 e-Golf 电池

到了 2017 款,大众更换了 e-Golf 的电池供应商。最新款 35.8 kWh 的电池来自三星 SDI ,选用的是 37 Ah 电芯,EPA 续航里程为 201 km 。
依然长路漫漫。

德国另外一家不能忽视的厂家就是传说中培养出三星 SDI 和宁德时代两家重量级电池供应商的宝马。
终于说到宝马 i3 。宝马 i 系列是全新设计的产品线,从 i3 的电池结构可以看到,非常平整的一个长方体,电池外壳就像一个抽屉一样,里面装了 96 个电芯。

宝马 i3

i3 老款电池容量 22 kWh ,EPA 续航里程仅 130 km ,使用的是 60 Ah 电芯。
i3 新款的电芯尺寸不变,采用了来自三星 SDI 的 94 Ah 和 3.7 V 的镍钴锰(NCM)电芯,电芯能量密度为 357.4 Wh/L 和 173.9 Wh/kg 。电池总容量为 33 kWh ,EPA 续航里程提升到 182 km 。

看来,光有结构的平整也没用,装不下大电池,就是装不下。
而奔驰,最早 Smart 和 B-Class 的电动力系统都是由特斯拉供应的,后来经更换后,结构上没有大的改动,篇幅有限就不展开了。

奔驰 Smart

奔驰 B-Class

雷诺 Zoe

看完了这些传统车企的电动车产品之后,我们最后来看特斯拉的底盘,这个应该是大家最熟悉的图了。有一种满满一车电池的富有感。

特斯拉 Model S

特斯拉 Model S

特斯拉有从 60 kWh 到 100 kWh 的不同电池版本。中间升级过一次 18650 的电芯,从每节 2.9 Ah 升级到 3.1 Ah ,在保持结构不变的基础上,70 kWh 的版本直接升级到 75 kWh 。

我们来看一下特斯拉在 EPA 标准下的续航数据。

特斯拉 Model S 的续航里程,截图来自 Wikipedia

特斯拉 Model S 的续航里程,截图来自 Wikipedia

特斯拉 Model S 的续航里程,截图来自 Wikipedia

截图里可以看到,以 Model S 为例,特斯拉 EPA 标准的续航里程覆盖 300 多到 500 多公里。而在最新公布的 EPA 数据里可以看到,Model 3 长续航版的续航里程也已达到了 499 公里。

从市售产品上来看,完全是碾压级的胜利。
所以,大众公布了要打造全新的电动车 MEB 平台,MEB 平台的技术将在大众集团内共享。这个平台长这样。

大众 MEB 平台

奔驰全新的电动车平台 EQ 长这样。

奔驰 EQ 平台

装不下大电池的老平台注定只是过渡。
当然,一个新平台的打造往往需要上百亿的投入,在电动车还仅是小众市场时,传统车企在财务上的保守表现是非常正常的。这也带来了特斯拉的机会点和领先市场的优势。

市售产品的性能对比,实际比较的是产品层面。

产品,其实是企业综合策略的体现。要考虑市场规模,品牌定位,还要核算成本及价格。比如,一个低端品牌,在没有品牌溢价的定价能力的前提下,不敢轻易打造像特斯拉这样百万级价位的豪华电动车。

当你定义了自己是未来市场的领导者,还是跟随者的时候,你也同时定义下了,你的产品是不是一定要应用最新最好的技术。而这一点,正是科技爱好者最为看重的事情。

为了更客观地比较各家产品的差别,现在我们谈技术层面,也就是从电池系统要谈到电芯了。

从上一个部分的电芯演变,或许你可以注意到,大家都开始采用镍钴锰(NCM)电池了。NCM 是电池的正极材料,根据正极材料划分,目前主流的电池主要有三种类型,磷酸铁锂,镍钴锰(NCM)和镍钴铝(NCA)。

磷酸铁锂电池的安全性更高,能量密度更低,在客车上的应用更广。比亚迪由于押宝在磷酸铁锂路线上,而在三元锂电池的探索上占了下风。在乘用车上,我们主要认识的就是两种电池,NCM 和 NCA 。特斯拉的松下圆柱电池就是 NCA 材料。

NCM 电池组成

想要提高电池能量密度,第一条要做的就是提高电芯正极材料的比容量。镍的含量越高,电芯的比容量就越高。另外,由于钴价太高,提高镍的比例的同时降低钴的比例,能够成功降低电芯成本,这也是高镍电芯发展趋势的重要原因。

而我们常见的 NCM 111 / 523 / 622 / 811 指的都是这三种元素之间的比例。也就是说,NCM 811 是目前镍比例最高的电芯。

宝马的电池路线图

我们从宝马的电池路线图里就可以看到,NCM 会从 111 的比例逐渐调整到 811 。2018 款宝马 i3 会用到三星 SDI 的 NCM 622 电芯,而直到 2021 年以后,宝马才会在 i5 上应用 NCM 811 电芯。

而奔驰的 EQ 平台在 2018 年的第三季度就会使用 SK innovation 的 NCM 811 电芯。
从 LG Chem 的资料上来看,计划使用他们最新款 811 电池的车型有以下这些:

  • 日产 Leaf E-Plus ( 60 kWh 版本)
  • 现代 Kona EV
  • 现代 IONIQ Electric (电池升级版)
  • 起亚 Niro EV
  • 第二代 Renault Zoe ( 2019 )
  • 大众 ID(2019)
  • 欧宝 Corsa EV (2019)
  • 标致 208 EV (2019)

也就是,应用 NCM 811 电芯的车型最早会在 2018 年看到。
虽然这些厂家没有提供目前 NCM 811 电芯的能量密度数据,但是我们可以看一份 Solid Power 提供的数据。

来源:Solid Power

采用 NCM 811 正极和石墨负极的电芯,可以达到 255 Wh/kg ,536 Wh/L 的能量密度。
而 CATL 的官方资料显示,他们电芯的能量密度目前能达到 240 Wh/kg 。

来源:CATL 美国官网

另外,来自比亚迪的官方资料显示,比亚迪 NCM 电池的能量密度目前能达到 200 Wh/kg 。

来源:比亚迪的公开演讲

特斯拉目前 18650 电芯的能量密度大概在 250 Wh/kg 的水平,而在 Model 3 的 2170 电芯上,特斯拉将采用硅碳负极,将电芯能量密度提升到 300 Wh/kg 。

也就是说,单纯比较电芯能量密度的话,其他厂家可以达到特斯拉 18650 电芯的能量密度水平,但是在已经开始对外交付的 Model 3 上,特斯拉又领先了。

除了在正极材料上提高镍的比例以外,在负极材料中使用硅碳也是业内认可的一个方向。因为石墨的理论能量密度是 372 mAh/g,而硅负极的理论能量密度高达 4200 mAh/g 。

只是硅负极材料存在膨胀的问题,可能会导致电池容量丧失,影响电池的循环寿命。目前在量产电芯上,只有特斯拉宣布成功应用了硅碳负极材料。

电池路线演变,来源:Solid Energy

在《促进汽车动力电池产业发展行动方案》中,工信部提出,新型锂离子动力东池的电芯能量密度要超过 300 Wh/kg ,电池系统能量密度达到 260 Wh/kg ,而到 2025 年,电池系统能量密度要达到 350 Wh/kg 。

目前,NCM 811 已经把镍的比例提高到很难再大幅提升的水平了,使用硅碳负极或者研究不同的正极材料将会是一个提升点。而到 300 Wh/kg 以上,固态电池的技术突破将会成为关键。

在产品层面上,车企早就可以应用更新更好的技术,但由于早期电动车市场太小,车企没有大规模资金投入到电动车新平台的开发上,内燃机车型平台的先天因素导致无法装载大电池。

大众的续航时间表

日产的续航时间表

雷诺的续航时间表

另一方面,有调研公司的市场调查显示,三四百公里的续航已经足以满足当前用户的需求。老奸巨猾,不,经验丰富的老牌车企并不想冒冒失失地推出成本高昂的车型。

在传统内燃机车型的市场上,他们早就习惯如此。在新创公司抢着用华丽数据吸引眼球的时候,他们不急,一边慢慢推进自己的新平台计划,一边想办法在舆论上攻击竞争对手。

所以,特斯拉的电池续航能力到底强在哪儿呢。
第一,在电芯技术层面,大家选择了不同的技术路线,在 250 Wh/kg 水平的能量密度上不分上下。但是特斯拉在硅碳负极材料上成功突破到 300Wh/kg ,又早一步领先业内水平。

第二,由于没有历史包袱,特斯拉得以抛去内燃机底盘的包袱,开发全新的电动车平台,在电池系统的布局设计上获得了很高的自由度,可以很早就推出 100 kWh 的电池容量,领先行业几年。

第三,在马斯克一流的营销能力下,特斯拉成功打造了高品牌定位,从而可以在高价位的市场区间快速应用最新最好的技术。

写评论
积分赞赏
点赞
评论区
  • 编辑
  • {{is_favourite ? '已收藏' : '收藏'}}
  • 举报
  • 加入黑名单
  • 删除
  • 取消置顶
  • 置顶推荐
    • 6小时
    • 12小时
    • 24小时
    • 3天
    • 一周
    • 长期
  • {{digest?'撤销精华':'设为精华'}}
回到顶部
  • 全部评论{{detailStore.commentnum}} 条
  • 只看作者
  • 最热
  • 最新
  • 最早

「待审核」

{{ comment.relativeTime }} 已被赞赏 {{comment.integral}} 积分 回复

暂无相关评论

发表一下个人看法吧